The results of complex studies of static and dynamic performance of 1550 nm-range VCSELs, which were created by direct bonding (wafer fusion technique) InAlGaAs/InP optical cavity wafers with AlGaAs/GaAs distributed Bragg reflector wafers grown by molecular beam epitaxy, are presented. The VCSELs with a buried tunnel junction diameter less than 7 μm demonstrated a single-mode lasing with a side-mode suppression ratio more than 40 dB; however, at diameters less than 5 μm, a sharp increase in the threshold current is observed. It is associated to the appearance of a saturable absorber due to penetration of optical mode into the non-pumped regions of the active region. The maximum single-mode output optical power and the -3 dB modulation bandwidth reached 4.5 mW and 8 GHz, respectively, at 20oC. The maximum data rate at 20oC under non-return-to-zero on-off keying modulation was 23 Gb/s for a short-reach link based on single-mode fiber SMF-28. As the length of the optical link increased up to 2000 m, the maximum data rate dropped to 18 Gbit/s. The main factors affecting the high-speed operation and data transmission range are defined and discussed, and the further ways to overcome themit are proposed. Keywords: VCSEL, wafer fusion, molecular beam epitaxy, single-mode operation, high-speed performance.