Soil hydraulic and physical properties can be influenced by various land management practices, and they determine water movement and storage within the vadose zone, with both agronomic and environmental effects. The objective of this study was to evaluate the effects of two such practices (no‐till [NT] and cover crops [CCs]) on soil hydraulic (e.g., saturated hydraulic conductivity [Ksat], and water retention) and physical (e.g., bulk density [BD], pore size distribution, air‐filled pore spaces [AFPSs], and water‐filled pore spaces [WFPSs]) properties. The CCs used included crimson clover (Trifolium incarnatum L.), hairy vetch (Vicia villosa Roth.), winter peas (Lathyrus hirsutus L.), oats (Avena sativa), winter wheat (Triticum aestivum L.), triticale (Triticale hexaploide Lart.), flax (Linum usitassimum L.), and barley (Hordeum vulgare L.). Soil samples were collected and analyzed during 2021 and 2022 right before CC termination at 0‐ to 10‐cm, 10‐ to 20‐cm, and 20‐ to 30‐cm depths. Results showed that, during 2021 and 2022, BD was 18% and 14% higher, respectively, under NC compared with CC management, while Ksat was 2.2 and 1.9 times higher, respectively, under CC compared with NC management. Further, the non‐capillary pores were significantly (p ≥ 0.05) higher under CC compared with NC management during both years of study. As a result, the majority of the total pores under CCs were filled with air, while the majority of total pores under NC management were filled with water. Therefore, this CC mix may be useful in lengthening the growing period during wet seasons by increasing air‐filled pore spaces.