Subwavelength imaging requires the use of high numerical aperture (NA) lenses together with immersion liquids in order to achieve the highest possible resolution. Following exciting recent developments in metasurfaces that have achieved efficient focusing and novel beam-shaping, the race is on to demonstrate ultra-high NA metalenses. The highest NA that has been demonstrated so far is NA=1.1, achieved with a TiO2 metalens and back-immersion. Here, we introduce and demonstrate a metalens with high NA and high transmission in the visible range, based on crystalline silicon (c-Si). The higher refractive index of silicon compared to TiO2 allows 2 us to push the NA further. The design uses the geometric phase approach also known as the Pancharatnam-Berry phase and we determine the arrangement of nano-bricks using a hybrid optimization algorithm (HOA). We demonstrate a metalens with NA = 0.98 in air, a bandwidth (FWHM) of 274 nm and a focusing efficiency of 67% at 532 nm wavelength, which is close to the transmission performance of a TiO2 metalens. Moreover, and uniquely so, our metalens can be front-immersed into immersion oil and achieve an ultra-high NA of 1.48 experimentally and 1.73 theoretically, thereby demonstrating the highest NA of any metalens in the visible regime reported to the best of our knowledge. The fabricating process is fully compatible with CMOS technology and therefore scalable. We envision the front-immersion design to be beneficial for achieving ultra-high NA metalenses as well as immersion metalens doublets, thereby pushing metasurfaces into practical applications such as high resolution, low-cost confocal microscopy and achromatic lenses.Metasurfaces are artificial sheet materials of sub-wavelength thickness that modulate electromagnetic waves mainly through photonic resonances [1][2][3]. Their properties are based on the ability to control the phase and/or polarisation of light with subwavelength-scale dielectric or metallic nano-resonators [4,5]. Correspondingly, metasurfaces are able to alter every aspect of transmitting or reflecting beams, achieving various extraordinary optical phenomena including deflection [6 -8], retro-reflection [9, 10], polarization conversion [4, 11 -14], focusing [15 -17] and beam-shaping [18], with a nanostructured thin film alone. Focusing metasurfaces -namely metalenses -are amongst the most promising optical elements for practical applications [19,20], e.g. for cell phone camera lenses [21,22] or ultrathin microscope objectives [23,24], since their subwavelength nanostructures are able to provide more precise and efficient phase control compared to binary amplitude and phase Fresnel zone plates .
The resolution limit of far-field optical microscopy is reexamined with a full vectorial theoretical analysis. A highly symmetric excitation optical field and optimized detection scheme are proposed to harness the total point-spread function for a microscopic system. Spatial resolution of better than 1/6λ is shown to be obtainable, giving rise to a resolution better than 100 nm with visible light excitation. The experimental measurement is applied to examine nonfluorescent samples. A lateral resolution of 1/5λ is obtained in truly far-field optical microscopy with a working distance greater than ∼500λ. Comparison is made for the far-field microscopic measurement with that of a nearfield scanning optical microscopy, showing that the proposed scheme provides a better image quality.
Human ability to visualize an image is usually hindered by optical scattering. Recent extensive studies have promoted imaging technique through turbid materials to a reality where color image can be restored behind scattering media in real time. The big challenge now is to recover objects in a large field of view with depth resolving ability. Based on the existing research results, we systematically study the physical relationship between speckles generated from objects at different planes. By manipulating a given single point spread function, depth-resolved imaging through a thin scattering medium can be extended beyond the original depth of field (DOF). Experimental testing of standard scattering media shows that the DOF can be extended up to 5 times and the physical mechanism is depicted. This extended DOF is benefit to 3D imaging through scattering environment, and it is expected to have important applications in science, technology, bio-medical, security and defense.
We have experimentally demonstrated the measurement of a tighter focal spot generated by a radially polarized narrow-width annular beam with the double-knife-edge method. The reconstructed spot profiles indicate that sharper focus cannot be achieved by shrinking the annular aperture further. The smallest focal spot (0.0711λ(2)) is obtained in experiment with an annular factor of 0.91. An apodization function has been introduced with the consideration of the diffraction effect, which achieves good agreement with the experimental data. Our result shows that the diffraction effect should be considered with small topography structures of the incident beam.
Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that above-mentioned drawbacks can be essentially overcome. The realization of high speed color imaging through turbid media is successfully carried out by taking into account the media memory effect, the point spread function, the exit pupil of the optical system, and the optimized signal to noise ratio. By retrieving selected speckles with enlarged field of view, high quality image is recovered with a responding speed only determined by the frame rates of the image capturing devices. The immediate application of the technique is expected to register static and dynamic imaging under human skin to recover information with a wearable device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.