Human ability to visualize an image is usually hindered by optical scattering. Recent extensive studies have promoted imaging technique through turbid materials to a reality where color image can be restored behind scattering media in real time. The big challenge now is to recover objects in a large field of view with depth resolving ability. Based on the existing research results, we systematically study the physical relationship between speckles generated from objects at different planes. By manipulating a given single point spread function, depth-resolved imaging through a thin scattering medium can be extended beyond the original depth of field (DOF). Experimental testing of standard scattering media shows that the DOF can be extended up to 5 times and the physical mechanism is depicted. This extended DOF is benefit to 3D imaging through scattering environment, and it is expected to have important applications in science, technology, bio-medical, security and defense.
Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that above-mentioned drawbacks can be essentially overcome. The realization of high speed color imaging through turbid media is successfully carried out by taking into account the media memory effect, the point spread function, the exit pupil of the optical system, and the optimized signal to noise ratio. By retrieving selected speckles with enlarged field of view, high quality image is recovered with a responding speed only determined by the frame rates of the image capturing devices. The immediate application of the technique is expected to register static and dynamic imaging under human skin to recover information with a wearable device.
Abstract:We demonstrate a high-speed method to image objects through thin scattering media and around corners. The method employs a reference object of known shape to retrieve the speckle-like point spread function of the scatterer. We extract the point spread function of the scatterer from a dynamic scene that includes a static reference object and uses this to image the dynamic objects. Sharp images are reconstructed from the transmission through a diffuser and from the reflection off a rough surface. The sharp and clean reconstructed images from single shot data exemplify the robustness of the method.
Incoherently illuminated or luminescent objects give rise to a low-contrast speckle-like pattern when observed through a thin diffusive medium, as such a medium effectively convolves their shape with a speckle-like point spread function (PSF). This point spread function can be extracted in the presence of a reference object of known shape. Here it is shown that reference objects that are both spatially and spectrally separated from the object of interest can be used to obtain an approximation of the point spread function. The crucial observation, corroborated by analytical calculations, is that the spectrally shifted point spread function is strongly correlated to a spatially scaled one. With the approximate point spread function thus obtained, the speckle-like pattern is deconvolved to produce a clear and sharp image of the object on a speckle-like background of low intensity.
Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.