Context: Knee injury and disease are common, debilitating, and expensive. Pain is a chief symptom of knee injury and disease and likely contributes to arthrogenic muscle inhibition. Joint pain alters isolated motor function, muscular strength, and movement biomechanics. Because knee pain influences biomechanics, it likely also influences long-term knee joint health. Objective: The purpose of this article is 2-fold: (1) review effects of knee pain on lower-extremity muscular activation and corresponding biomechanics and (2) consider potential implications of neuromechanical alterations associated with knee pain for long-term knee joint health. Experimental knee pain is emphasized because it has been used to mimic clinical knee pain and clarify independent effects of knee pain. Three common sources of clinical knee pain are also discussed: patellofemoral pain, anterior cruciate ligament injury and reconstruction, and knee osteoarthritis. Data Sources: The PubMed, Web of Science, and SPORTDiscus databases were searched for articles relating to the purpose of this article. Conclusion: Researchers have consistently reported that knee pain alters neuromuscular activation, often in the form of inhibition that likely occurs via voluntary and involuntary neural pathways. The effects of knee pain on quadriceps activation have been studied extensively. Knee pain decreases voluntary and involuntary quadriceps activation and strength and alters the biomechanics of various movement tasks. If allowed to persist, these neuromechanical alterations might change the response of articular cartilage to joint loads during movement and detrimentally affect long-term knee joint health. Physical rehabilitation professionals should consider neuromechanical effects of knee pain when treating knee injury and disease. Resolution of joint pain can likely help to restore normal movement neuromechanics and potentially improve long-term knee joint health and should be a top priority.