The walking human body is mechanically unstable. Loss of stability and falling is more likely in certain groups of people, such as older adults or people with neuromotor impairments, as well as in certain situations, such as when experiencing conflicting or distracting sensory inputs. Stability during walking is often characterized biomechanically, by measures based on body dynamics and the base of support. Neural control of upright stability, on the other hand, does not factor into commonly used stability measures. Here we analyze stability of human walking accounting for both biomechanics and neural control, using a modeling approach. We define a walking system as a combination of biomechanics, using the well known inverted pendulum model, and neural control, using a proportional-derivative controller for foot placement based on the state of the center of mass at midstance. We analyze this system formally and show that for any choice of system parameters there is always one periodic orbit. We then determine when this periodic orbit is stable, i.e. how the neural control gain values have to be chosen for stable walking. Following the formal analysis, we use this model to make predictions about neural control gains and compare these predictions with the literature and existing experimental data. The model predicts that control gains should increase with decreasing cadence. This finding appears in agreement with literature showing stronger effects of visual or vestibular manipulations at different walking speeds.