Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
One of the factors hindering the normal development of additive construction technologies is the lack of reasonable methods for evaluating the suitability of mixtures for printing. This makes it almost impossible to compare remotely the compositions of different developers, makes it difficult to develop equipment and regulatory documentation, without which it is impossible to complete industrial production. The paper considers the feasibility of introducing the concept of “printability” of compositions and “rheological technological index of mixtures” as a numerical indicator for its evaluation. The design of the device for determining the rheological technological index is described. The developed device has a low cost of production, is linked to standard equipment of construction laboratories and emulates the main types of effects on the mixture during the extrusion process. The effective method for ensuring the printability of fine-grained concretes is considered based on the joint use of traditional plasticizing additives with entrained agents – foaming agents for cellular concretes. The effect of these additives is realized at different scale levels (micro-and mesolevels (cement paste) – traditional superplasticizers; macro-level (fine aggregate) - entrained agents), which together provides high rheological technological indices and effectiveness of mixtures with increased amounts of sand, low W/C ratios and small dosages of these additives. The use of additional mineral or organic rheology modifiers that increase the cost of the mixture is not required in this case. The structural features and basic properties of the developed composites are studied, allowing making comparisons with the solutions of other developers, assessing the prospects of the proposed method of ensuring printability, and outlining directions for its further improvement.
One of the factors hindering the normal development of additive construction technologies is the lack of reasonable methods for evaluating the suitability of mixtures for printing. This makes it almost impossible to compare remotely the compositions of different developers, makes it difficult to develop equipment and regulatory documentation, without which it is impossible to complete industrial production. The paper considers the feasibility of introducing the concept of “printability” of compositions and “rheological technological index of mixtures” as a numerical indicator for its evaluation. The design of the device for determining the rheological technological index is described. The developed device has a low cost of production, is linked to standard equipment of construction laboratories and emulates the main types of effects on the mixture during the extrusion process. The effective method for ensuring the printability of fine-grained concretes is considered based on the joint use of traditional plasticizing additives with entrained agents – foaming agents for cellular concretes. The effect of these additives is realized at different scale levels (micro-and mesolevels (cement paste) – traditional superplasticizers; macro-level (fine aggregate) - entrained agents), which together provides high rheological technological indices and effectiveness of mixtures with increased amounts of sand, low W/C ratios and small dosages of these additives. The use of additional mineral or organic rheology modifiers that increase the cost of the mixture is not required in this case. The structural features and basic properties of the developed composites are studied, allowing making comparisons with the solutions of other developers, assessing the prospects of the proposed method of ensuring printability, and outlining directions for its further improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.