Effective interactions among the various compartments of the testis are necessary to sustain efficiency of the spermatogenic process. To study the intercellular communication between the Sertoli and Leydig cells in the complete absence of FSH receptor signaling, we have examined several indices of Leydig cell function in FSH receptor knockout (FORKO) mice. The serum testosterone levels were reduced in the 3- to 4-mo-old adult FORKO males compared to wild-type mice despite no significant alteration in circulating LH levels. Treatment with ovine LH resulted in a dose-dependent increase in serum testosterone levels in all three genotypes (+/+, +/-, and -/-). However, the response in FORKO males was significantly reduced. Similarly, the total intratesticular testosterone per testis was also lower, but the intratesticular testosterone per milligram of testis was significantly elevated in the FORKO males. Western blot analysis revealed an apparent higher expression of the enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD) as well as LH-receptor density in the testis of FORKO males. Immunohistochemistry also showed an increase in the intensity of 3beta-HSD staining in the testicular sections of FORKO males. Although LH receptor binding increased per unit weight in FORKO mice, the total LH binding remained the same in all genotypes. Taken together, the results of the present study suggest that, in the absence of FSH receptor signaling, the testicular milieu is altered to affect Leydig cell response to LH such that circulating testosterone is reduced in the adult mutant. Studies are currently under way to understand the mechanisms underlying this phenomenon.