Humulus lupulus L. (hops) is a popular botanical
dietary supplement used by women as a sleep aid and for postmenopausal
symptom relief. In addition to its efficacy for menopausal symptoms,
hops can also modulate the chemical estrogen carcinogenesis pathway
and potentially protect women from breast cancer. In the present study,
an enriched hop extract and the key bioactive compounds [6-prenylnarigenin
(6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol
(XH)] were tested for their effects on estrogen metabolism in breast
cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed
2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation
pathways, respectively. The results indicated that the hop extract
and 6-PN preferentially induced the 2-hydroxylation pathway in both
cell lines. 8-PN only showed slight up-regulation of metabolism in
MCF-7 cells, whereas IX and XH did not have significant effects in
either cell line. To further explore the influence of hops and its
bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results
correlated with the metabolism data and showed that hop extract and
6-PN preferentially enhanced P450 1A1 mRNA expression and increased
P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation
by the isolated compounds was tested using xenobiotic response element
(XRE) luciferase construct transfected cells. 6-PN was found to be
an AhR agonist that significantly induced XRE activation and inhibited
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced
XRE activity. 6-PN mediated induction of EROD activity was also inhibited
by the AhR antagonist CH223191. These data show that the hop extract
and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation
pathway through AhR mediated up-regulation of P450 1A1, which further
emphasizes the importance of standardization of botanical extracts
to multiple chemical markers for both safety and desired bioactivity.