Abstract-Texture and microtexture measurements were correlated with mechanical property data for a superplastic 5083 aluminum alloy. Prior processing had included an overaging treatment followed by severe rolling deformation and the as-received material was annealed prior to mechanical testing. Discontinuous recrystallization by particle-stimulated nucleation during the annealing accounts for a predominantly random texture, although a weak {100}Ͻ0vw> component was present, as well as a random grain boundary disorientation angle distribution. During elevated temperature deformation under dislocation-creep-controlled conditions, a distinct Ͻ111> fiber component and a relatively weak {100}Ͻ001> cube orientation, which are mutually compatible during uniaxial tensile extension, became apparent in the texture. Also, low-angle boundaries became evident in the disorientation distribution. In contrast, the random texture component and the randomness of the disorientation distribution became more evident when the material was deformed under conditions of grain boundary sliding control of deformation. A transition from dislocation creep to grain boundary sliding observed in the microtexture measurements of this work may be predicted by treating constitutive equations for dislocation creep and grain boundary sliding in an additive manner. Published by