In this study, a circulating water experimental system was constructed to investigate the scale inhibition, scale removal, corrosion inhibition, and disinfection effects of industrial circulating water under the combined action of electromagnetic and electrochemical fields. The influence of these effects on water quality parameters and their scale inhibition and corrosion inhibition effects on hanging plate experiments were examined. Qualitative and quantitative analyses of scale samples were conducted using XRD (X-ray diffraction) and SEM (scanning electron microscopy), along with the evaluation of changes in water quality parameters (such as conductivity, hardness, Chemical Oxygen Demand (COD), turbidity, iron ions, and chloride ions) before and after the experiments. The results showed that after 360 h of circulation experiment, at a water temperature of 30 °C, electromagnetic field frequency of 1 kHz, electrochemical scale removal device voltage of 24 V, current of 10 A, and water flow rate of 0.6 m/s, the transformation of calcite to aragonite in CaCO3 scale samples occurred, with a 76.6% increase in aragonite content. Moreover, the conductivity decreased by 11.6%, hardness decreased by 42.0%, COD decreased by 59.7%, turbidity decreased by 48.1%, and chloride and iron ion concentrations decreased by 36.6% and 63.1%, respectively. The scale inhibition efficiency reached 53.8%, surpassing the effects of electromagnetic and electrochemical actions individually. These findings demonstrate that the combined action of electromagnetic and electrochemical fields can effectively enhance scale inhibition, scale removal, corrosion inhibition, and disinfection and algae removal effects.