The solution of linear systems of equations is the basis of many other quantum algorithms, and recent results provided an algorithm with optimal scaling in both the condition number κ and the allowable error ϵ [PRX Quantum 3, 0403003 (2022)]. That work was based on the discrete adiabatic theorem, and worked out an explicit constant factor for an upper bound on the complexity. Here we show via numerical testing on random matrices that the constant factor is in practice about 1,500 times smaller than the upper bound found numerically in the previous results. That means that this approach is far more efficient than might naively be expected from the upper bound. In particular, it is over an order of magnitude more efficient than using a randomised approach from [arXiv: 2305.11352] that claimed to be more efficient.