We present a quantum algorithm for the simulation of molecular systems that is asymptotically more efficient than all previous algorithms in the literature in terms of the main problem parameters. As in previous work [Babbush et al., New Journal of Physics 18, 033032 (2016)], we employ a recently developed technique for simulating Hamiltonian evolution, using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The algorithm of this paper involves simulation under an oracle for the sparse, first-quantized representation of the molecular Hamiltonian known as the configuration interaction (CI) matrix. We construct and query the CI matrix oracle to allow for on-the-fly computation of molecular integrals in a way that is exponentially more efficient than classical numerical methods. Whereas second-quantized representations of the wavefunction require O(N ) qubits, where N is the number of single-particle spin-orbitals, the CI matrix representation requires O(η) qubits where η N is the number of electrons in the molecule of interest. We show that the gate count of our algorithm scales at most as O(η 2 N 3 1 We use the typical computer science convention that f ∈ Θ(g), for any functions f and g, if f is asymptotically upper and lower bounded by multiples of g, O indicates an asymptotic upper bound, O indicates an asymptotic upper bound suppressing any polylogarithmic factors in the problem parameters, Ω indicates the asymptotic lower bound and f ∈ o(g) implies f /g → 0 in the asymptotic limit. arXiv:1506.01029v3 [quant-ph] 25 May 2017 1. Represent the molecular Hamiltonian in Eq.(1) in first quantization using the CI matrix formalism. This requires selection of a spin-orbital basis set, chosen such that the conditions in Theorem 1 are satisfied.2. Decompose the Hamiltonian into sums of self-inverse matrices approximating the required molecular integrals via the method of Section IV.3. Query the CI matrix oracle to evaluate the above self-inverse matrices, which we describe in Section V.4. Simulate the evolution of the system over time t using the method of [27], which is summarized in Section VI.2 The basis of atomic orbitals is not necessarily orthogonal. However, this can be fixed using the efficient Lowdin symmetric orthogonalization procedure which seeks the closest orthogonal basis [16,36].
Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates. lb 0
Modeling low energy eigenstates of fermionic systems can provide insight into chemical reactions and material properties and is one of the most anticipated applications of quantum computing. We present three techniques for reducing the cost of preparing fermionic Hamiltonian eigenstates using phase estimation. First, we report a polylogarithmic-depth quantum algorithm for antisymmetrizing the initial states required for simulation of fermions in first quantization. This is an exponential improvement over the previous state-of-the-art. Next, we show how to reduce the overhead due to repeated state preparation in phase estimation when the goal is to prepare the ground state to high precision and one has knowledge of an upper bound on the ground state energy that is less than the excited state energy (often the case in quantum chemistry). Finally, we explain how one can perform the time evolution necessary for the phase estimation based preparation of Hamiltonian eigenstates with exactly zero error by using the recently introduced qubitization procedure.
Characterizing quantum systems through experimental data is critical to applications as diverse as metrology and quantum computing. Analyzing this experimental data in a robust and reproducible manner is made challenging, however, by the lack of readily-available software for performing principled statistical analysis. We improve the robustness and reproducibility of characterization by introducing an open-source library, QInfer, to address this need. Our library makes it easy to analyze data from tomography, randomized benchmarking, and Hamiltonian learning experiments either in post-processing, or online as data is acquired. QInfer also provides functionality for predicting the performance of proposed experimental protocols from simulated runs. By delivering easy-to-use characterization tools based on principled statistical analysis, QInfer helps address many outstanding challenges facing quantum technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.