Background: This study aims to investigate the effects of different direct oral anticoagulants on experimental renal injury induced by temporary infrarenal aortic occlusion.
Methods: A total of 35 male Wistar rats (250 to 350 g) were randomly allocated to any of the five groups: sham, ischemia-reperfusion, rivaroxaban, dabigatran, and apixaban groups. Sham group underwent median laparotomy. Ischemia-reperfusion group was given saline gavage for one week. Animals in the other groups received rivaroxaban (3 mg/kg), dabigatran (15 mg/kg), or apixaban (10 mg/kg) daily once for one week via oral gavage. The infrarenal abdominal aorta was clamped for 60 min, and reperfusion was maintained for 120 min in the ischemia-reperfusion, rivaroxaban, dabigatran, and apixaban groups. At the end of reperfusion, kidneys were harvested for biochemical and histopathological analysis.
Results: Renal total antioxidant capacity was reduced, and total oxidant status, interleukin-1 beta, and tumor necrosis factor-alpha were elevated in the ischemia-reperfusion group, compared to the sham group (p<0.005). Histological damage scores were also higher in the ischemia-reperfusion group (p<0.005). Administration of direct oral anticoagulants caused an increase of total antioxidant capacity and reduction of total oxidant status, tumor necrosis factor-alpha, and interleukin-1 beta in the rivaroxaban, dabigatran, and apixaban groups compared to the ischemia-reperfusion group (p<0.005). Histological damage scores were lower in the rivaroxaban and dabigatran groups than the ischemia-reperfusion group scores (p<0.005).
Conclusion: Direct oral anticoagulants reduce aortic clamping-induced renal tissue oxidation and inflammation. Rivaroxaban and dabigatran attenuate ischemia-reperfusion-related histological damage in kidneys.