The knowledge of the chemical forms of copper in soils and the relationships of these forms with soil copper availability are important for predicting the copper behavior in the soil-plant system. The present work studies the influence of liming on the available contents of copper as well as on the forms of copper fractions in six types of Oxisols. Soil samples, with and without liming, received copper at rates of 0.0, 20.0 and 40.0 mg dm-3 and remained incubated for 30 days. Then, available copper was extracted with Mehlich-1, Mehlich-3, DTPA and EDTA solutions, and analyzed by atomic absorption spectrophotometry. Additionally, soil samples were extracted in a sequential procedure to determine Cu in fractions of soil, as follows: exchangeable-Cu fraction, organic matter-Cu fraction, Mn oxide-Cu fraction, amorphous Fe oxide-Cu fraction, crystalline Fe oxide-Cu fraction, residual-Cu fraction, and the total Cu content in the soil. Soil samples to which Cu was added presented higher Cu retention in the organic matter fraction with a small percentage retained in the exchangeable-Cu fraction. Liming resulted in a decrease of Cu in the exchangeable and organic matter fractions and an increase in the Fe and Mn oxide fractions and in the residual fraction. Without liming, the organic matter fraction presented the highest contribution to Cu content found in the soil extracts obtained with all extractors, except EDTA. For treatments with liming, Cu contents in the organic matter fraction were better correlated to Cu contents in extracts obtained with DTPA and Mehlich-3.