Mobile (bio)available metal concentration in contaminated soils can be minimized through biological immobilization and stabilization methods using a range of organic compounds, such as "biochar." Biochar has a high surface area, highly porous, variable -charge organic material that has the potential to increase soil water holding capacity, surface sorption and base saturation when added to soil. The soil was characterized before and after amending by standard method. The parent soil used for this study was collected from lead-acid battery chargers' workshop. . There is a gradual decrease in the concentration of the heavy metals as the concentration of biochar increases from 5 -20%. Fractionation result shows that the heavy metals (Zn,Cr,Cd,Cu and Pb) were mainly associated with the residual fraction, the mobility factor for the heavy metals was calculated and found to be higher for all metals in the parent soil than the Biochar amended soil. Contamination levels were moderate for Cd and Cr, considerably for Pb, Cu and Zn. The results indicated that long term discharge of these battery chargers' wastes into the environment will cause accumulation of some toxic metals in soils which may lead to elevated levels of these metals in plants.
Soil contamination by heavy metals is a worldwide environmental problem. Hence determining the chemical forms of a metal in soils is important to evaluate its mobility and bioavailability. This study determined the distribution and speciation of some heavy metals (Fe, Cu, Zn, Pb and Cd) in soils around some selected auto repair workshops in Oghara, Delta State, Nigeria. Soil samples were collected with the aid of soil Augar within a depth of 0 -15 cm from the vicinity of the four selected auto repair workshops in Oghara, Delta State, Nigeria. The control samples were taken from a site free from auto repair and commercial activities. The soil samples were assessed for some physico-chemical properties, total heavy metal concentration, chemical speciation, mobility and some metal assessment indices of the heavy metals as a function of soil properties. The mean concentration of Fe, Cu, Zn, Pb and Cd in all the sites analyzed were 550. 54, 31.08, 36.15, 4.21 and 1.11 mg/kg respectively. Site B and the control had the highest and lowest total concentration of the five metals analyzed respectively. The levels of Cu were above the DPR target value in sites A and B, while the levels of Cd were above the target value in all the sites except in the control site. All the metals were found to be mostly concentrated in the residual fraction except Zn which was found mostly in the carbonate fraction. The mobility factors revealed that Zn is the most mobile element with an average mobility factor of 41.54% while Cd is the least mobile element with an average mobility factor of 16.51%. Contamination factors, index of geoaccumulation and pollution load index were also calculated. This study showed that mechanic workshop is one of the major sources of anthropogenic heavy metals concentration in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.