Hydroxyapatite (HA) is a porous material widely developed in various research fields because of its high biodegradability, biocompatibility, and low toxicity. In this research, HA was synthesized using a hydrothermal method with chicken eggshells as a calcium source and various concentrations of polyvinyl alcohol as a porogen (2.5%, 5.0%, and 7.5% by wt). The structure and morphology of HA were determined by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. HA was obtained with varying concentrations of polyvinyl alcohol (PVA) porogen according to Inorganic Crystal Structure Database (ICSD) standard. Based on analysis using a refinement method, changes in unit cell parameters (cell volume and lattice strain) of HA synthesized using PVA porogen compared to the standard, the chi square (χ2) and index of R values were relatively low, validating the acceptable of the data. In addition, HA [Ca10(PO4)6(OH)2] with hexagonal structure and the P63/m space group was successfully obtained. Morphological analysis of HA by SEM found that HA has a spherical shape, and the porosity of HA increases with increasing concentrations of polyvinyl alcohol. The highest porosity was obtained with an addition of 5.0 wt% of PVA porogen (HAP3), reaching 69.53%.