Extensive experimental trials were conducted, emulating the conditions modelled, in order to validate the computational fluid dynamic results. Final results demonstrated that a more constricted nozzle was more effective at creating a stable gas column when subjected to side draughts. Higher shielding gas flow rates further reduce the gas column's vulnerability to side draughts and thus create a more stable coverage. The results have highlighted potential economic benefits for draught free environments, in which, the shielding gas flow rate can effectively be reduced