2016)Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels, Science and Technology of Welding and Joining, 21:3, 209-215,The porosity formation in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steel is studied over a wide range of the heat inputs (160-250 J mm 21 ), which shows low porosity in weld bead (,2% of bead area) in low (,250 J mm 21 ) and high (.350 J mm 21 ) heat inputs and maximum at medium (250-350 J mm 21 ) heat inputs. The high speed imaging of weld pool shows that the highest frequency of zinc vapour escapes at high heat inputs compared to other conditions. Numerous experiments show that size and location of pores along with escaping of zinc vapour are the results of competition of viscosity of weld pool against buoyancy and vapour pressure within the time required to reach solidification temperature. Based on this concept, mechanisms involved in porosity formation, growth and escape phenomena are disclosed, which can help select the optimised welding conditions to obtain porosity free welds in CMT-GMAW of zinc coated steels.
In carbon dioxide (CO2) laser—gas metal arc hybrid welding, a shielding gas is supplied to isolate the molten metal from the ambient air, suppress the laser-induced plasma, remove the plume out of the keyhole, and stabilize the metal transfer. In this study, a shielding gas consisting of helium, argon, and CO2 was used, and its effects on the composition of the welding phenomena, such as behaviours of laser-induced plasma generation, molten pool flow, and droplet transfer in gas metal arc welding, were investigated. High-speed video observation was used to investigate the welding phenomena inside the arc regime. Consequently, helium was found to have a dominant role in suppressing laser-induced plasma; minimum helium content at a laser power of 8 kW was suggested for laser autogenous and hybrid welding. Argon and CO2 govern the droplet transfer and arc stability. A 12 per cent addition of CO2 stabilizes the metal transfer and eliminates undercut caused by insufficient wetting of molten metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.