Atom transfer radical polymerization (ATRP) is a “living”/controlled radical polymerization, which is also used for surface grafting of various materials including textiles. However, the commonly used metal complex catalyst, CuBr, is mildly toxic and results in unwanted color for textiles. In order to replace the transition metal catalyst of surface-initiated ATRP, the possibility of HRP biocatalyst was investigated in this work. 2-hydroxypropyl methacrylate (HPMA) was grafted onto the surface of silk fabric using the horseradish peroxidase (HRP) biocatalyzed ATRP method, which is used to improve the crease resistance of silk fabric. The structure of grafted silk fabric was characterized by Fourier transform infrared spectrum, X-ray photoelectron spectroscopy, thermogravimetic analysis, and scanning electron microscopy. The results showed that HPMA was successfully grafted onto silk fabric. Compared with the control silk sample, the wrinkle recovery property of grafted silk fabric was greatly improved, especially the wet crease recovery property. However, the whiteness, breaking strength, and moisture regain of grafted silk fabric decreased somewhat. The present work provides a novel, biocatalyzed, environmentally friendly ATRP method to obtain functional silk fabric, which is favorable for clothing application and has potential for medical materials.