The objective of this study was to evaluate the influence of hydrofluoric acid (HF) and conditioning time on the micro-shear bond strength (µSBS) between dual-cure resin cement and glass-ceramic materials, such as lithium disilicate ceramic (IPS e.max CAD, Ivoclar Vivadent) (EX) and leucite-reinforced ceramic (IPS Empress CAD, Ivoclar Vivadent) (EP), and also a hybrid ceramic (Vita Enamic, Vita Zahnfabrik) (VE). Eighteen sections with 1 mm thickness were cut from each CAD/CAM material and randomly divided into three groups, according to the surface etching time (30 s, 60 s, 90 s). The surface treatment was performed using 9.5% HF acid gel, then resin cement was applied on the prepared ceramic plates and light cured. µSBS values between resin cement and the ceramic material were measured with a universal testing machine at a crosshead speed of 0.5 mm/min until the failure occurred. The fractured surfaces of specimens were microscopically evaluated, and failure modes were classified as: adhesive between resin cement and ceramic, cohesive within ceramic or cement and mixed failure. Surface roughness of etched samples was examined using a scanning electron microscope. Obtained data were statistically analysed using one-way analysis of variance (ANOVA) and Bonferroni post hoc test with a level of significance α = 0.05. The results of the statistical methods applied indicate that µSBS mean difference for leucite-reinforced ceramic (EP) was statistically significant (p < 0.05). However, µSBS values for hybrid ceramic (VE) and lithium disilicate ceramic (EX) were not affected, from a statistical point of view, by the conditioning time (p > 0.05).