This study compared the heat-shock response and metabolic energy status in hatcheryraised and two groups of wild-caught steelhead trout parr collected from the Navarro River watershed, California. Wild parr were from coastal and inland sites with different thermal regimes. Fish were exposed in the laboratory to 25 ± 0.2°C for 2-h and the heat-shock response was assessed in muscle tissue via induction of heatshock proteins (hsps) 63, 72, 78, and 89. Metabolic measurements included muscle phosphocreatine (PCr), ATP, ADP, and AMP, and hepatic glycogen. Inland and coastal fish overlapped considerably with regard to their hsp responses and energetic endpoints, but hatchery fish were distinct in the biochemical patterns they exhibited. Hsp expression levels after temperature shock were significantly lower in hatchery than in wild fish. Hatchery fish also had significantly lower hepatic glycogen and higher muscle ADP, ATP, and PCr concentrations than wild fish. Coastal and inland steelhead did not differ significantly with regard to peak hsp72 and hsp89 levels or to concentrations of energy metabolites. However, fish from the warm-water, inland site expressed significantly less hsp63, maintained higher basal levels of hsp72, and induced hsp89 more slowly than fish from the cold-water, coastal site. Discriminant function analysis revealed that hatchery fish can be distinguished from wild Navarro River fish with 84.9% certainty using the following function: f(x) = -43.6 + 0.14(Gly) + 4.1(PCr) + 186.4 (AMP) + 80.8(ADP) -0.14(hsp63) + 0.005 (hsp72). This study demonstrates that within a single species, rearing conditions or genetic variation can influence an organism's disposition and cellular response to thermal stress. Extrapolation of results from laboratory studies on hatchery fish to wild fish may therefore not be possible, and caution must be used when interpreting hsp data obtained for wild fish with different thermal histories.