SUMMARY
Introduction and Aims:In patients with ST-segment elevation myocardial infarction who receive percutaneous coronary intervention and stenting, a large zone with no-reflow is associated with adverse outcomes. During myocardial ischemia/reperfusion, phosphatidylserine (PS) translocates to the surface of endothelial cells triggering attachment of platelets and leukocytes, thus impairing microvascular blood flow. Diannexin, a recombinant dimer of the endogenous human annexin V protein, binds PS and thus inhibits the adverse effects of PS. It has been shown to attenuate postischemic reperfusion injury in several experimental models. We speculated that Diannexin would reduce no-reflow in the heart after coronary artery occlusion (CAO) and reperfusion. Rabbits received: (1) Diannexin 5 min pre-CAO (diannexin pre ischemia [DPI], 400 μg/kg, n = 17), or (2) Diannexin 5 min pre-coronary reperfusion (diannexin pre reperfusion [DPR], 400 μg/kg, n = 20), or (3) saline (Cont, n = 18), with 30 min CAO and 3 h reperfusion. In a secondary analysis, rabbits were divided into two groups based on the overall average risk zone size of 29% of the left ventricle (LV): small (<29% of LV) and large (>29% of LV). Results: Overall, risk zones and infarct size, and the no-reflow zone were similar in all groups. In hearts with large risk zones the noreflow area was significantly smaller in both drug-treated groups (DPI, 22 ± 5% and DPR, 22 ± 3% vs. control 40 ± 3%, P < 0.006), the hemorrhagic areas were significantly smaller, and infarct size was reduced at the P < 0.06 level compared with control. In animals with small risk zones there were no significant differences. Diannexin treatment did not affect hemodynamics or LV function. Conclusion: Diannexin was cardioprotective in rabbits with a severe ischemic insult. This is important, because large infarcts accompanied by no-reflow in humans are associated with increased complications. In animals with small risk zones, no significant drug effect was observed.