Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of a future Linear Collider. The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. A test stand for measuring the charge transfer inefficiency (CTI) of a prototype CPCCD has been set up. Studies of the CTI have been performed at a range of readout frequencies and operating temperatures. Abstract-Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying shortlived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of a future Linear Collider. The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. A test stand for measuring the charge transfer inefficiency (CTI) of a prototype CPCCD has been set up. Studies of the CTI have been performed at a range of readout frequencies and operating temperatures.