There is a scarcity of research on the characterization of the behaviour of titanium and its alloys in highly corrosive environments. These materials are highly recommended for use in various industries such as aviation, maritime, medical, and chemical, due to their perceived superior corrosion resistance. This research examines the mechanical and corrosion characteristics of Ti6Al4V material when exposed to solutions containing 9% NaCl, 25% HCl, and a mixture of 9% NaCl and 25% HCl. Prior to the corrosion process, the prefabricated Ti6Al4V samples underwent microstructure analysis, hardness assessment, and wear evaluation. The microstructure characterization revealed that the microstructure of the Ti6Al4V alloy is composed of α and modified β phases. The Ti6Al4V sample’s hardness value was determined to be 334.23 HB. The Ti6Al4V sample’s wear rate was determined to be 0.0033 g/Nm, while the friction coefficient was determined to be 0.0326. Corrosion testing was conducted at intervals of 24, 48, 72, 168, and 336 h. Based on the corrosion rate measurements, the sample exhibited the minimum corrosion rate of 1.928519 mg/(dm2.day) in a 9% NaCl environment. The sample with a combination of 9% NaCl and 25% HCl had the maximum corrosion rate, measured at 6.493048 mg per square decimetre per day. The formation of a larger oxide layer in the Ti6Al4V corrosion sample immersed in a 9% NaCl solution serves as a protective barrier on the surface and enhances its resistance to corrosion.