Pan B, Toms D, Shen W, Li J. MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am J Physiol Endocrinol Metab 308: E525-E534, 2015. First published January 27, 2015; doi:10.1152/ajpendo.00480.2014.-We sought to investigate whether miR-378 plays a role in cumulus cells and whether the manipulation of miRNA levels in cumulus cells influences oocyte maturation in vitro. Cumulus-oocyte complexes (COCs) from ovarian follicles had significantly lower levels of precursor and mature miR-378 in cumulus cells surrounding metaphase II (MII) oocytes than cumulus cells surrounding germinal vesicle (GV) oocytes, suggesting a possible role of miR-378 during COC maturation. Overexpression of miR-378 in cumulus cells impaired expansion and decreased expression of genes associated with expansion (HAS2, PTGS2) and oocyte maturation (CX43, ADAMTS1, PGR). Cumulus cell expression of miR-378 also suppressed oocyte progression from the GV to MII stage (from 54 Ϯ 2.7 to 31 Ϯ 5.1%), accompanied by a decrease of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), zona pellucida 3 (ZP3), and CX37 in the oocytes. Subsequent in vitro fertilization resulted in fewer oocytes from COCs overexpressing miR-378 reaching the blastocyst stage (7.3 Ϯ 0.7 vs. 16.6 Ϯ 0.5%). miR-378 knockdown led to increased cumulus expansion and oocyte progression to MII, confirming a specific effect of miR-378 in suppressing COC maturation. Aromatase (CYP19A1) expression in cumulus cells was also inhibited by miR-378, leading to a significant decrease in estradiol production. The addition of estradiol to IVM culture medium reversed the effect of miR-378 on cumulus expansion and oocyte meiotic progression, suggesting that decreased estradiol production via suppression of aromatase may be one of the mechanisms by which miR-378 regulates the maturation of COCs. Our data suggest that miR-378 alters gene expression and function in cumulus cells and influences oocyte maturation, possibly via oocyte-cumulus interaction and paracrine regulation.