Preserving hydrological variability is important when developing environmental flow regimes, and a number of tools have been developed to support this process. A commonly applied method is the index of hydrological alteration (IHA), which describes a set of indices that can be used to assess changes in flow regimes. In cold climate regions, river ice can have large effects on flow regimes through frazil and anchor ice formation, ice cover formation, and ice break-up, and the impact of this is usually not included in the commonly used indexes. However, to understand the effect of ice formation and the break-up on the flow regime, the ice effects on the hydrology should be considered when assessing winter alteration indexes. This paper looks at the effects of river ice on winter flow conditions using data from Norwegian rivers, and discusses these effects in relation to hydrological variability. This paper also shows how indexes can be used to classify ice-induced variability, how this should be used to avoid ice-induced effects in the current analysis, and how this can be combined with the current indices to improve the winter flow regime classification. The findings from this paper show that frazil-and anchor-induced raises of the water level have a large impact on the perceived flow in winter, producing higher flow and deeper water than what the open water conditions discharge could do. Corresponding to this, winter lows connected to ice-induced high flows at other locations are also common. Finally, issues related to the assessment of the temporal and spatial effects of ice formation are discussed.