Natural gas (NG) is an attractive fuel for heavy-duty internal combustion engines because of its potential for reduced CO2, particulate, and NOX emissions and lower cost of ownership. Pilot-ignited direct-injected NG (PIDING) combustion uses a small pilot injection of diesel to ignite a main direct injection of NG. Recent studies have demonstrated that increased NG premixing is a viable strategy to increase PIDING indicated efficiency and further reduce particulate and CO emissions while maintaining low CH4 emissions. However, it is unclear how the combustion strategies relate to one another, or where they fit within the continuum of NG stratification. The objective of this work is to present a systematic evaluation of pilot combustion, NG combustion, and emissions behavior of stratified-premixed PIDING combustion modes that span from fully-premixed to non-premixed conditions. A sweep of the relative injection timing, [Formula: see text], of NG and pilot diesel was performed in a heavy-duty PIDING engine with [Formula: see text] = 140–220 bar, [Formula: see text] = 0.47–0.71, and a constant NG energy fraction of 94%. Apparent heat release rate and emissions analyses identified interactions between the pilot fuel and NG, and qualitatively characterized the impact of NG stratification on combustion and emissions. Changes in the [Formula: see text] resulted in six distinct PIDING combustion regimes, for all considered injection pressures and equivalence ratios: (i) RIT-insensitive premixed, (ii) stratified-premixed (early-cycle injection), (iii) NG jet impingement transition, (iv) stratified-premixed (late-cycle injection), (v) variable premixed fraction, and (vi) minimally-premixed. Parametric definitions for the bounds of each regime of combustion were valid for the wide range of [Formula: see text] and [Formula: see text] investigated, and are expected to be relevant for other PIDING engines, as previously identified regimes agree with those identified here. This conceptual framework encompasses and validates the findings of previous stratified PIDING investigations, including optimal ranges of operation that provide significantly increased efficiency and lower emissions of incomplete combustion products.