An innovative "biodrug" concept, based on the oral administration of living recombinant microorganisms, has recently emerged for the prevention or treatment of various diseases. An engineered Saccharomyces cerevisiae strain expressing plant P450 73A1 (cinnamate-4-hydroxylase [CA4H] activity) was used, and its survival and ability to convert trans-cinnamic acid (CIN) into p-coumaric acid (COU) were investigated in vivo. In rats, the recombinant yeast was resistant to gastric and small intestinal secretions but was more sensitive to the conditions found in the large intestine. After oral administration of yeast and CIN, the CA4H activity was shown in vivo, with COU being found throughout the rat's digestive tract and in its urine. The bioconversion reaction occurred very fast, with most of the COU being produced within the first 5 min. The gastrointestinal sac technique demonstrated that the recombinant yeast was able to convert CIN into COU (conversion rate ranging from 2 to 5%) in all the organs of the rat's digestive tract: stomach, duodenum, jejunum, ileum, cecum, and colon. These results promise new opportunities for the development of drug delivery systems based on engineered yeasts catalyzing a bioconversion reaction directly in the digestive tract.