is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.This is an author-deposited version published in: https://sam.ensam.eu Handle ID: .http://hdl.handle.net/10985/13136
To cite this version :Akash GUPTA, Mohamed BEN BETTAIEB, Farid ABED-MERAIM, Surya KALIDINDIComputationally efficient predictions of crystal plasticity based forming limit diagrams using a spectral database -International Journal of Plasticity -Vol. 103, p.168-187 -2018 Any correspondence concerning this service should be sent to the repository
A B S T R A C TThe present investigation focuses on the development of a fast and robust numerical tool for the prediction of the forming limit diagrams (FLDs) for thin polycrystalline metal sheets using a Taylor-type (full constraints) crystal plasticity model. The incipience of localized necking is numerically determined by the well-known Marciniak-Kuczynski model. The crystal plasticity constitutive equations, on which these computations are based, are known to be highly nonlinear, thus involving computationally very expensive solutions. This presents a major impediment to the wider adoption of crystal plasticity theories in the computation of FLDs. In this work, this limitation is addressed by using a recently developed spectral database approach based on discrete Fourier transforms (DFTs). Significant improvements were made to the prior approach and a new database was created to address this challenge successfully. These extensions are detailed in the present paper. It is shown that the use of the database allows a significant reduction in the computational cost involved in crystal plasticity based FLD predictions (a reduction of about 96% in terms of CPU time).