Fungal biomasses are capable of treating metal-contaminated effluents with efficiencies several orders of magnitude superior to activated carbon (F-400) or the industrial resin Dowex-50. Additionally, fungal biomasses are susceptible to engineering improvements and regeneration of their capabilities. With regard to organic pollutants, excessive nutrients and dyes, fungi can remove them from wastewaters, leading to a decrease in their toxicities. However, the detoxification rates seem to be dependent on media and culture conditions. The postreatement by anaerobic bioprocesses of effluents that have been pretreated with fungi can lead to higher biogas than the original effluents. In addition to the degradation of organic pollutants, fungi produce added-value products such as enzymes (LiP, MnP, Lacc, amylase, etc.) and single-cell protein (SCP). Most research on fungal capacities to purify polluted effluents has been performed on a laboratory scale, hence there is a need to extend such research to pilot scale and to apply it to industrial processes.