An introduction to thermal sensors and thermistor materials is given in brief. After that novel electrical components such as thick film thermistors and thermal sensors based on them are described: Custom designed NTC thermistor pastes based on nickel manganite NiM 2 O 4 micro/nanostructured powder were composed and new planar cellbased (segmented) constructions were printed on alumina. The thick film segmented thermistors were used in novel thermal sensors such as anemometers, water flow meters, gradient temperature sensor of the ground, and other applications. The advances achieved are the consequence of previous improvements of thermistor material based on nickel manganite and modified nickel manganite such as Cu 0.2 Ni 0.5 Zn 1.0 Mn 1.3 O 4 and optimization of thick film thermistor geometries for sensor applications. The thermistor powders where produced by a solid state reaction of MnCO 3 , NiO, CuO, ZnO powders mixed in proper weight ratio. After calcination the obtained thermistor materials were milled in planetary ball mils, agate mills and finally sieved by 400 mesh sieve. The powders were characterized by XRD and SEM. The new thick film pastes where composed of the powders achieved, an organic vehicle and glass frit. The pastes were printed on alumina, dried and sintered and characterized again by XRD, SEM and electrical measurements. Different thick film thermistor constructions such as rectangular, sandwich, interdigitated and segmented were printed of new thermistor pastes. Their properties such as electrical resistance of the thermistor samples where mutually compared. The electrode effect was measured for all mentioned constructions and surface resistance was determined. It was used for modeling and realizations of high, medium and low ohmic thermistors with different power dissipation and heat loss. Finally all the results obtained lead to thermal sensors based on heat loss for measuring the air flow, water flow, temperature gradient and heat transfer from the air to the ground.