The inner ear is responsible for hearing and balance and consists of a membranous labyrinth within a bony labyrinth. The balance structure is divided into the otolith organ that recognizes linear acceleration and the semicircular canal that is responsible for rotational movement. The cochlea is the hearing organ. The external and middle ear are covered with skin and mucosa, respectively, and the space is filled with air, whereas the inner ear is composed of endolymph and perilymph. The inner ear is a fluid-filled sensory organ composed of hair cells with cilia on the upper part of the cells that convert changes in sound energy and balance into electric energy through the hair cells to transmit signals to the auditory nerve through synapses. Aquaporins (AQPs) are a family of transmembrane proteins present in all species that can be roughly divided into three subfamilies according to structure and function: 1) classical AQP, 2) aquaglyceroporin, and 3) superaquaporin. Currently, the subfamily of mammalian species is known to include 13 AQP members (AQP0-AQP12). AQPs have a variety of functions depending on their structure and are related to inner ear diseases such as Meniere's disease, sensorineural hearing loss, and presbycusis. Additional studies on the relationship between the inner ear and AQPs may be helpful in the diagnosis and treatment of inner ear disease.