The endocochlear DC potential (EP) is generated by the stria vascularis, and essential for the normal function of hair cells. Intermediate cells are melanocytes in the stria vascularis. To examine the contribution of the membrane potential of intermediate cells (E(m)) to the EP, a comparison was made between the effects of K(+) channel blockers on the E(m) and those on the EP. The E(m) of dissociated guinea pig intermediate cells was measured in the zero-current clamp mode of the whole-cell patch clamp configuration. The E(m) changed by 55.1 mV per 10-fold changes in extracellular K(+) concentration. Ba(2+), Cs(+), and quinine depressed the E(m) in a dose-dependent manner, whereas tetraethylammonium at 30 mM and 4-aminopyridine at 10 mM had no effect. The reduction of the E(m) by Ba(2+) and Cs(+) was enhanced by lowering the extracellular K(+) concentration from 3.6 mM to 1.2 mM. To examine the effect of the K(+) channel blockers on the EP, the EP of guinea pigs was maintained by vascular perfusion, and K(+) channel blockers were administered to the artificial blood. Ba(2+), Cs(+) and quinine depressed the EP in a dose-dependent manner, whereas tetraethylammonium at 30 mM and 4-aminopyridine at 10 mM did not change the EP. A 10-fold increase in the K(+) concentration in the artificial blood caused a minor decrease in the EP of only 10.6 mV. The changes in the EP were similar to those seen in the E(m) obtained at the lower extracellular K(+) concentration of 1.2 mM. On the basis of these results, we propose that the EP is critically dependent on the voltage jump across the plasma membrane of intermediate cells, and that K(+) concentration in the intercellular space in the stria vascularis may be actively controlled at a concentration lower than the plasma level.
AQP2, V2-R, and TRPV4 were expressed in the luminal epithelium of human ES. The same characteristic distribution of water and ion channels is seen in the kidney, where a significant amount of fluid is filtrated and resorbed. ES probably plays an active role in the homeostasis of the endolymph.
Our previous studies have suggested a close relationship between vasopressin and endolymphatic hydrops, or the increased volume of endolymph in the inner ear. Endolymphatic hydrops is also thought to occur in Ménière's disease patients. In the kidney collecting duct, vasopressin induces the expression of aquaporin-2 (AQP2), resulting in increased water reabsorption. We explored the possibility, using a quantitative PCR method, that vasopressin regulates the expression of AQP2 mRNA in the rat inner ear, as it does in the kidney. The levels of AQP2 mRNA in the cochlea and endolymphatic sac were significantly higher in rats treated with vasopressin than the levels in control animals. We speculate that over-expression of AQP2 may be involved in the formation of endolymphatic hydrops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.