Considerable evidence indicates that the general blockade of protein synthesis prevents both the initial consolidation and the postretrieval reconsolidation of long-term memories. These findings come largely from studies of drugs that block ribosomal function, so as to globally interfere with both cap-dependent and -independent forms of translation. Here we show that intraamygdala microinfusions of 4EGI-1, a small molecule inhibitor of cap-dependent translation that selectively disrupts the interaction between eukaryotic initiation factors (eIF) 4E and 4G, attenuates fear memory consolidation but not reconsolidation. Using a combination of behavioral and biochemical techniques, we provide both in vitro and in vivo evidence that the eIF4E-eIF4G complex is more stringently required for plasticity induced by initial learning than for that triggered by reactivation of an existing memory. T he synthesis of new proteins within relevant neuronal circuits is widely agreed to be a basic requirement for long-term memory (LTM) storage. Translation is important for stabilizing active memories because it triggers the production of new proteins that are required for persistent molecular and synaptic changes during both consolidation (after learning) and reconsolidation (after memory reactivation). However, the role of translation in memory formation has been explored only in the context of overall cellular protein translation. There are at least two forms of protein synthesis that could in principle be exploited for either memory consolidation or reconsolidation. The primary mode of translation initiation requires formation of a multiprotein complex of eukaryotic initiation factors (eIFs) bound to the 5′ methylated-GTP cap of target mRNAs (1, 2). Specifically, the interaction between eIF4E and eIF4G facilitates eIF4A RNA helicase activity, recruitment of the 40S ribosomal subunit, scanning, and peptide elongation (3, 4). Molecules that block the formation of eIF4F (eIF4E + eIF4G + eIF4A), such as the endogenous regulator 4E-binding protein, which binds to and sequesters eIF4E, therefore effectively inhibits cap-dependent translation. Likewise, the small molecule, 4EGI-1, which selectively disrupts eIF4E-eIF4G interactions (eIF4F formation) in vitro (5), also inhibits cap-dependent translation. The second route that mRNAs can be translated occurs via internal ribosomal entry sites (IRES), which are unaffected by disruptions to the 5′ cap translation machinery, such as blockade of eIF4E-eIF4G interactions (5). A role for eIF4E-eIF4G interactions during hippocampal synaptic plasticity has been shown (6-8), but they have not yet been demonstrated for memory formation. The ability to dissociate mechanisms of translation control is relevant to the study of associative learning because little is known about the relative roles of cap-dependent and IRES-mediated translation in mammalian brain function. For example, there is evidence that an IRES mediates translation of fragile X mental retardation protein, a protein that is absent in ...