The lithium titanium oxide ion sieve with good structural stability and high adsorption capacity is generally considered to be a promising adsorbent for lithium recovery. Herein, the lithium ion sieve precursor Li2TiO3 was prepared based on amorphous TiO2, and then Li+ was acid‐eluted to obtain the lithium adsorbent H2TiO3, denoted as HTO‐Am. The structure and adsorption properties of HTO‐Am were investigated, and the results demonstrated that the HTO‐Am prepared at the optimum temperature had excellent adsorption properties for Li+. The adsorption process follows pseudo‐second‐order kinetic and Langmuir isotherm equations, indicating that lithium is adsorbed chemically and monolayer on HTO‐Am. HTO‐Am ion sieves were prepared successfully for the first time and exhibited high selectivity, favorable adsorption rate, and cycle performance for Li+.