The electrical conductivity of molten MCl-NdCl3 (M = Li, Na, Rb and Cs) has been measured from the liquidus temperature up to ~ 1180 K. The measurements were performed in usual U-shaped capillary quartz cells with platinum electrodes. The molar conductivity (Λ) has been computed by using literature data on the densities of the binary systems. In all cases, when the temperature range exceeds about 100 K, the plot lnΛ vs. 1/T is not a straight line. The activation energy of the conductivity does not remain constant but reduces with increasing temperature. In the specific and molar conductivity isotherms strong deviations from additivity are noted. The results are discussed in terms of octahedral local coordination of Nd3+ over the entire concentration range.
A cell for the electrical conductivity measurements of molten salts at the elevated temperatures and vapor pressures of several tens of atmospheres was constructed. The electrical conductivities of molten BeCl 2 , ZnCl 2 , and PbCl 2 were measured up to temperatures of (823, 1421, and 1320) K, respectively. The melts density was estimated, and molar conductivities at the same temperatures were calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.