In order to demonstrate the activation effects of a Pt electrode by laser pulse irradiation, the electro-oxidation of glucose was tested at an activated Pt electrode by cyclic voltammetry. A fixed potential was applied to the electrode, and then the electrode was irradiated with laser pulses from a Nd:YAG laser at 20 Hz for 20 s. Activation by the laser pulse irradiation gave two remarkable effects on cyclic voltammograms from the electro-oxidation of glucose in a 0.1 mol dm -3 NaOH solution, i.e., surface modulation and cleaning effects. Significant differences were found in the cyclic voltammograms at the activated and at the simply polished electrodes. Such differences in the oxidation waves are attributed to a crystallographic change of the electrode surface induced by a laser ablation, accompanied by laser pulse irradiation. Due to the cleaning effect, the activated Pt electrode gave a sharp oxidation wave at -0.3 V even in real samples containing various organic compounds that could foul the electrode, though the activated Pt electrode lacked selectivity to the electro-oxidation of glucose.