During epididymal transit, spermatozoa acquire new surface antigens that are involved in the acquisition of their fertilizing ability. We have previously described a 34-kDa (P34H) human epididymal sperm protein that shows antigenic and functional homologies with the hamster P26h. P34H is localized on the acrosomal cap of human spermatozoa and has been proposed to be involved in the interaction with the zona pellucida. The aim of this study was to document the expression of P34H on the sperm surface during transit along the male and female genital tracts. Immunohistochemical techniques were performed on human testes and epididymides by means of an antiserum specific for P34H. No labelling was detected on those spermatozoa found within the seminiferous tubules or in the vasa efferentia. P34H first appeared in the caput epididymidis and was restricted to the acrosomal cap. Signal intensity then increased considerably from the proximal corpus to the cauda region of the epididymis. After ejaculation, the same pattern of P34H distribution was observed, but the intensity was much lower than that characterizing the cauda epididymal spermatozoa. Strong labeling was restored after incubation in B2 medium and was maximal after 5 h of capacitation. After acrosomal exocytosis induced by a Ca2+ ionophore, the percentage of P34H-labeled spermatozoa decreased proportionally to the number of acrosome-reacted spermatozoa as determined by Pisum sativum-fluorescein isothiocyanate (FITC) labeling. P34H appeared to be strongly anchored to the sperm plasma membrane during epididymal transit as indicated by the requirement for detergent to extract this surface antigen from ejaculated spermatozoa. This confirms the importance of P34H binding to the sperm plasma membrane during epididymal maturation. We have previously proposed that P34H is involved in sperm-zone pellucida interaction. The appearance and accumulation of P34H on the sperm plasma membrane during epididymal maturation, followed by its inaccessibility associated with ejaculation, its unmasking during capacitation, and finally its elimination after the acrosome reaction, are in agreement with te proposed function of this sperm antigen.