The aim of this research was to investigate the physiological responses and, in particular, the participation of lactic acid anaerobic metabolism in aerobic dance, which is claimed to be pure aerobic exercise. In contrast to previous studies, that have put subjects in very unfamiliar situations, the parameters were monitored in the familiar context of gymnasium, practice routine and habitual instructor. A group of 30 skilled fairly well-trained women performed their usual routine, a combination of the two styles: low (LI) and high impact (HI), and were continuously monitored for heart rate (HR) and every 8 min for blood lactate concentration ([La-]b). Of the group, 15 were tested to determine their maximal aerobic power (VO2max) using a cycle-ergometer. They were also monitored during the routine for oxygen uptake (VO2) by a light telemetric apparatus. The oxygen pulses of the routine and of the corresponding exercise intensity in the incremental test were not statistically different. The mean values in the exercise session were: peak HR 92.8 (SD 7.8)% of the subject's maximal theoretical value, peak VO2 99.5 (SD 12.4)% of VO2max, maximal [La-]b 6.1 (SD 1.7) mmol x l(-1), and mean 4.8 (SD 1.3) mmol x l(-1). Repeated measures ANOVA found statistically significant differences between the increasing [La-]b values (P < 0.001). In particular, the difference between the [La-]b values at the end of the mainly LI phase and those of the LI-HI combination phase, and the difference between the samples during the combination LI-HI phase were both statistically significant (both P = 0.002 and P = 0.002). The similar oxygen pulses confirmed the validity of the present experiment design and the reliability of HR monitoring in this activity. The HR, VO2 and, above all, the increase of [La-]b to quite high values, showing a non steady state, demonstrated the high metabolic demand made by this activity that involved lactic acid metabolism at a much higher level than expected.