“…In the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}, the Ricci identity (6) gives that The same computation holds for the unit vector fields e 2 and e 3 and we get R 2331 − (a 12 a 33 − a 13 a 23 ) = −g(d ∇ E(e 2 , e 3 ), e 2 ) R 2332 + R 2112 − (a 22 a 33 + a 22 a 11 − a 2 13 − a 2 12 + 5c) = g(d ∇ E(e 2 , e 3 ), e 1 ) + g(d ∇ E(e 1 , e 2 ), e 3 ) + c R 2113 − (a 23 a 11 − a 12 a 13 ) = −g(d ∇ E(e 1 , e 2 ), e 2 ) g(d ∇ E(e 1 , e 2 ), e 1 ) = g(d ∇ E(e 2 , e 3 ), e 3 ) R 3221 − (a 13 a 22 − a 23 a 21 ) = −g(d ∇ E(e 2 , e 3 ), e 3 ) R 3112 − (a 32 a 11 − a 31 a 12 ) = g(d ∇ E(e 1 , e 3 ), e 3 ) R 3113 + R 3223 − (a 22 a 33 − a 11 a 33 + a 2 13 + a 2 23 ) = g(d ∇ E(e 2 , e 3 ), e 1 ) − g(d ∇ E(e 1 , e 3 ), e 2 ) g(d ∇ E(e 2 , e 3 ), e 2 ) = −g(d ∇ E(e 1 , e 3 ), e 1 )…”