This study involved a histologic, enzyme histologic, immunohistologic, and three-dimensional microstructure evaluating the extent of osteogenesis and repair in the human alveolar extraction socket achievable with an artificial bone substitute. After tooth extraction in 7 patients, extraction sockets were filled with Mastergraft (15% hydroxyapatite, 85% β-tricalcium phosphate complex). Radio-micrographs and histologic examinations were performed on samples obtained during dental implant placement procedure. On micro– computed tomography, new bone was observed in all collected samples, and osteogenesis was observed to have taken place around the artificial bone substitute. Histologically, active osteogenesis was found throughout the region observed. Addition of new bone around the Mastergraft was observed, and osteoblast-like cells were present. Cells that had partially invaded the artificial bone included tartrate-resistant acid phosphate–positive and CD34-positive cells. These findings indicate that the Mastergraft artificial bone induced osteogenesis in the jawbone and seemed effective for repairing bone defects.