Surface seawaters are supersaturated with respect to calcite, but high concentrations of magnesium prevent spontaneous nucleation and growth of crystals. Foraminifera are the most widespread group of calcifying organisms and generally produce calcite with a low Mg content, indicating that they actively remove Mg 2؉ from vacuolized seawater before calcite precipitation. However, one order of foraminifera has evolved a calcification pathway, by which it produces calcite with a very high Mg content, suggesting that these species do not alter the Mg/Ca ratio of vacuolized seawater considerably. The cellular mechanism that makes it possible to precipitate calcite at high Mg concentrations, however, has remained unknown. Here we demonstrate that they are able to elevate the pH at the site of calcification by at least one unit above seawater pH and, thereby, overcome precipitation-inhibition at ambient Mg concentrations. A similar result was obtained for species that precipitate calcite with a low Mg concentration, suggesting that elevating the pH at the site of calcification is a widespread strategy among foraminifera to promote calcite precipitation. Since the common ancestor of these two groups dates back to the Cambrian, our results would imply that this physiological mechanism has evolved over half a billion years ago. Since foraminifera rely on elevating the intracellular pH for their calcification, our results show that ongoing ocean acidification can result in a decrease of calcite production by these abundant calcifyers.benthic foraminifera ͉ foraminiferal evolution ͉ ocean acidification A large variety of organisms that form skeletons of calciumcarbonate have evolved over the last half billion years. Some groups precipitate predominantly aragonite, such as scleractinian corals (1) and calcareous chlorophytes (2), others mostly calcite, such as foraminifera (3), coccolithophores (4), and corraline Rhodophytes (2), and some a chimera of the two (5,6). The geological prevalence of the different groups is thought to be caused by successions in sea water chemistry: periods with relatively high Ca 2ϩ concentrations and low Mg 2ϩ concentrations (i.e., with low Mg/Ca ratios) have favored organisms precipitating calcite, while periods with relatively high Mg/Ca ratios (e.g., during the Neogene) have favored those forming aragonite (7-9). For foraminifera, the relation between ocean chemistry and their evolution is less clear (10) and possibly obscured by the existence of different calcification strategies in this group.Calcifying foraminifera are commonly divided into two groups according to their test (i.e., shell) structure: miliolid and hyaline. Miliolids precipitate calcite in the form of needles with a length of 2-3 m within cytoplasmic vesicles (11, 12) (see: 13 for the only known exception in this taxon). Before chamber formation, these needles accumulate in the cell and form a new chamber after simultaneous transport outside the test and assembly within an organic matrix (14). The needles forming the outer lay...