It is well known that stochastic coupled oscillator network (SCON) has been widely applied; however, there are few studies on SCON with bidirectional cross-dispersal (SCONBC). This paper intends to study stochastic stability for SCONBC. A new and suitable Lyapunov function for SCONBC is constructed on the basis of Kirchhoff's matrix tree theorem in graph theory. Combining stochastic analysis skills and Lyapunov method, a sufficient criterion guaranteeing stochastic stability for the trivial solution of SCONBC is provided, which is associated with topological structure and coupling strength of SCONBC. Furthermore, some numerical simulation examples are given in order to illustrate the validity and practicability of our results.