Linoleic and a-linolenic acid are essential for normal cellular function, and act as precursors for the synthesis of longer chained polyunsaturated fatty acids (PUFAs) such as arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), which have been shown to partake in numerous cellular functions aecting membrane¯uidity, membrane enzyme activities and eicosanoid synthesis. The brain is particularly rich in PUFAs such as DHA, and changes in tissue membrane composition of these PUFAs re¯ect that of the dietary source. The decline in structural and functional integrity of this tissue appears to correlate with loss in membrane DHA concentrations. Arachidonic acid, also predominant in this tissue, is a major precursor for the synthesis of eicosanoids, that serve as intracellular or extracellular signals. With aging comes a likely increase in reactive oxygen species and hence a concomitant decline in membrane PUFA concentrations, and with it, cognitive impairment. Neurodegenerative disorders such as Parkinson's and Alzheimer's disease also appear to exhibit membrane loss of PUFAs. Thus it may be that an optimal diet with a balance of n-6 and n-3 fatty acids may help to delay their onset or reduce the insult to brain functions which these diseases elicit. Published by Elsevier Science Ltd.