Eleven basic proline-rich proteins were purified from the parotid saliva of a single individual. The complete amino acid sequences of six of these were determined by conventional protein sequence methodology, bringing to nine the number of known primary structures of nonglycosylated basic proline-rich proteins from the same individual. The partial sequence of one additional protein is also reported. All of the basic proline-rich proteins studied contain segments with identical or very similar sequences, but with two possible exceptions, none of the proteins is derived from another secreted proline-rich protein. The amino acid sequences of nine nonglycosylated basic proline-rich proteins were compared with primary structures deduced from published nucleotide sequences of DNA coding for human parotid proline-rich proteins. The sequences align well, in general, but differences also exist pointing to the complexity of the genetics of these proteins. Seven secretory basic proline-rich proteins appear to be formed from three larger precursors by selective posttranslational proteolyses of arginyl bonds. One of the basic proline-rich proteins appears to derive from human acidic proline-rich proteins. The remaining two proteins studied do not conform to any DNA structure as yet reported. Two of the basic proline-rich proteins studied are phosphoproteins and exhibit abilities to inhibit hydroxyapatite formation in vitro.
The influence of diets having different fatty acids composition on the fatty acid content of (the phospholipids) of rat liver mitochondria and microsomes, heart mitochondria, brain mitochondria and microsonies has been analyzed. It has been found that each organelle has its own peculiar composition in fatty acids. This composition may be profoundly influenced by the diet, but to different degrees in different organelles. Those of brain are most resistant. The changes observed are rather rapid, being generally already maximal after three weeks of treatment. The parallel between fatty acid composition of diets, and the changes observed in the organelles, is not strict, and is probably influenced by the metabolic competition among oleic acid, linoleic acid, linolenic acid. Unusual fatty acids like crucic acid. trans‐oleic acid. and trans‐linoleic acid can also become incorporated into the membranes of cell organelles.
Several studies concerning the extra-continental morphological affinities of Paleo-Indian skeletons, carried out independently in South and North America, have indicated that the Americas were first occupied by non-Mongoloids that made their way to the New World through the Bering Strait in ancient times. The first South Americans show a clear resemblance to modern South Pacific and African populations, while the first North Americans seem to be at an unresolved morphological position between modern South Pacific and Europeans. In none of these analyses the first Americans show any resemblance to either northeast Asians or modern native Americans. So far, these studies have included affirmed and putative early skeletons thought to date between 8,000 and 10,000 years B.P. In this work the extra-continental morphological affinities of a Paleo-Indian skeleton well dated between 11,000 and 11,500 years B.P. (Lapa Vermelha IV Hominid 1, or "Luzia") is investigated, using as comparative samples Howells' (1989) world-wide modern series and Habgood's (1985) Old World Late Pleistocene fossil hominids. The comparison between Lapa Vermelha IV Hominid 1 and Howells' series was based on canonical variate analysis, including 45 size-corrected craniometric variables, while the comparison with fossil hominids was based on principal component analysis, including 16 size-corrected variables. In the first case, Lapa Vermelha IV Hominid 1 exhibited an undisputed morphological affinity firstly with Africans and secondly with South Pacific populations. In the second comparison, the earliest known American skeleton had its closest similarities with early Australians, Zhoukoudian Upper Cave 103, and Taforalt 18. The results obtained clearly confirm the idea that the Americas were first colonized by a generalized Homo sapiens population which inhabited East Asia in the Late Pleistocene, before the definition of the classic Mongoloid morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.