Context Increasing the amount of green infrastructure, defined as small-scale natural landscape elements, has been named as a climate adaptation measure for biodiversity. While green infrastructure strengthened ecological networks in some studies, it is not known whether this effect also holds under climate change, and how it compares to other landscape adaptation options.
ObjectivesWe assessed landscape adaptation options under scenarios of climate change for a dispersallimited and climate-sensitive species: great crested newt, Triturus cristatus. Methods A spatially-explicit modelling framework was used to simulate newt metapopulation dynamics in a case study area in the Netherlands, under alternative spatial configurations of 500 ha to-berestored habitat. The framework incorporated weather-related effects on newt recruitment, following current and changing climate conditions. Results Mild climate change resulted in slightly higher metapopulation viability, while more severe climate change (i.e. more frequent mild winters and summer droughts) had detrimental effects on metapopulation viability. The modelling framework revealed interactions between climate and landscape configuration on newt viability. Restoration of ponds and terrestrial habitat may reduce the negative effects of climate change, but only when certain spatial requirements (habitat density, connectivity) as well as abiotic requirements (high ground water level) are met. Conclusions Landscape scenarios where habitat was added in the form of green infrastructure were not able to meet these multiple conditions, as was the case for a scenario that enlarged core areas. The approach allowed a deduction of landscape design rules that incorporated both spatial and abiotic requirements resulting in more effective climate adaptation options.Electronic supplementary material The online version of this article