Neonatal sepsis is characterized by systemic bacterial invasion followed by a massive inflammatory response. At present, no therapeutic strategy has been found that significantly reduces the mortality of neonatal sepsis. We aimed to investigate the protective role of an initial low-dose septic challenge for the prevention of subsequent lethal sepsis in a mouse model. A stock cecal slurry (CS) solution was prepared from adult ceca. The LD83 (1.5 mg CS/g) was used for all animals. An initial challenge of normal saline (NS) or 0.5 mg CS/g (non-lethal dose) was administered at four days of age, then 1.5 mg CS/g was administered intraperitoneally at seven days of age (72 h post-initial challenge), and survival was monitored. Initial exposure to NS (n = 10) resulted in 90% mortality following exposure to the LD83 CS dose in contrast to an initial exposure to CS (n = 16), which significantly decreased mortality to 6% (p < 0.0001), reduced blood bacterial counts, attenuated inflammatory responses, and suppressed lipid mediators. Initial exposure to a non-lethal CS dose prior to exposure to a lethal CS dose significantly reduces sepsis mortality, a protective effect that might be mediated by modulating abnormal systemic inflammatory responses.