Asthma is the most prevalent pediatric chronic disease and affects more than 300 million people worldwide. Recent evidence in mice has identified a "critical window" early in life where gut microbial changes (dysbiosis) are most influential in experimental asthma. However, current research has yet to establish whether these changes precede or are involved in human asthma. We compared the gut microbiota of 319 subjects enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) Study, and show that infants at risk of asthma exhibited transient gut microbial dysbiosis during the first 100 days of life. The relative abundance of the bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia was significantly decreased in children at risk of asthma. This reduction in bacterial taxa was accompanied by reduced levels of fecal acetate and dysregulation of enterohepatic metabolites. Inoculation of germ-free mice with these four bacterial taxa ameliorated airway inflammation in their adult progeny, demonstrating a causal role of these bacterial taxa in averting asthma development. These results enhance the potential for future microbe-based diagnostics and therapies, potentially in the form of probiotics, to prevent the development of asthma and other related allergic diseases in children.
Summary
Given the "inborn" nature of the innate immune system, it is surprising to find that innate immune function does in fact change with age. Similar patterns of distinct Toll-like receptor (TLR)-mediated immune responses come to light when one contrasts innate immune development at the beginning of life with that toward the end of life. Importantly, these developmental patterns of innate cytokine responses correlate with clinical patterns of susceptibility to disease: A heightened risk of suffering from excessive inflammation is often detected in prematurely born infants, disappears over the first few months of life, and reappears toward the end of life. In addition, risk periods for particular infections in early life reemerge in older adults. The near-mirror-image patterns that emerge in contrasts of early versus late innate immune ontogeny emphasize changes in host-environment interactions as the underlying molecular and teleologic drivers.
The human neonate and infant are unduly susceptible to infection with a wide variety of microbes. This susceptibility is thought to reflect differences from adults in innate and adaptive immunity, but the nature of these differences is incompletely characterized. The innate immune response directs the subsequent adaptive immune response after integrating information from Toll-like receptors (TLRs) and other environmental sensors. We set out to provide a comprehensive analysis defining differences in response to TLR ligation between human neonates and adults. In response to most TLR ligands, neonatal innate immune cells, including monocytes, conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively), produced less IL-12p70 and IFN-α (and consequently induced less IFN-γ), moderately less TNF-α, but as much or even more IL-1β, IL-6, IL-23, and IL-10 than adult cells. At the single-cell level, neonatal innate cells generally were less capable of producing multiple cytokines simultaneously, i.e., were less polyfunctional. Overall, our data suggest a robust if not enhanced capacity of the neonate vs. the adult white blood cell TLR-mediated response to support Th17- and Th2-type immunity, which promotes defense against extracellular pathogens, but a reduced capacity to support Th1-type responses, which promote defense against intracellular pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.