2000
DOI: 10.5802/aif.1807
|View full text |Cite
|
Sign up to set email alerts
|

The finite subgroups of maximal arithmetic kleinian groups

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
57
0
2

Year Published

2003
2003
2022
2022

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 24 publications
(59 citation statements)
references
References 9 publications
0
57
0
2
Order By: Relevance
“…for some fixed k. But then, the first term on the right hand side of (8) (8) ; 0) 3,13 (0; 6, 2 (7) ; 0) 3,17 (0; 2 (10) ; 0) 3,19 (0; 6, 2 (9) ; 0) 3,23 (0; 2 (12) ; 0) 3,31 (0; 6, 2 (13) ; 0) 7,11 (0; 2 (12) ; 0) (10) ; 0) 13 (0; 2 (11) ; 0) 17 (0; 2 (13) ; 0) 19 (0; 2 (14) ; 0) 2,3,5,11 ∅ (0; 6, 2 (4) ; 0) 7 (0; 6, 2 (9) ; 0) 13 (0; 6, 2 (14) ; 0) 2,3,5,13 ∅ (0; 2 (6) (14) ; 0) 2,3,7,11 ∅ (0; 4, 2 (5) ; 0) 5 (0; 4, 2 (10) ; 0) 2,3,7,13 ∅ (0; 2 (7) ; 0) 5 (0; 2 (13) ; 0) 2,3,7,17 ∅ (0; 2 (8) ; 0) 2,3,7,19 ∅ (0; 4, 2 (7) ; 0) 2,3 7,23 ∅ (0; 4, 2 (8) ; 0) 2,3 7,29 ∅ (0; 2 (11) ; 0) 2,3,7,31 ∅ (0; 4, 2 (10) ; 0) 2,3,7,41 ∅ (0; 2 (14) ; 0) 2,3,7,47 ∅ (0; 4, 2 (14) ; 0) 2,3,11,13 ∅ (0; 2 (9) ; 0) 2,3,11,17 ∅ (0; 6, 2 (9) ; 0) 2,3,11,19 ∅ (0; 4, 2 (10) ; 0) 2,3,11,29 ∅ (0; 6, 2 (14) ; 0) 2,3,13,17 ∅ (0; 2 (12) : 0) 2,3,13,23 ∅ (0; 2 (15) ; 0) 2,3,17,19 ∅ (0; 2 (16) ; 0) 2,5,7,11 ∅ (0; 2 (9) ; 0) 3 (0; 2 (14) ; 0) 2,5,7,13 ∅ (0; 2 (10) ; 0) 2,5,7,17 ∅ (0; 2 (12) : 0) Table 3. Cocompact groups with four ramified primes.…”
Section: And Let E Be An Eichler Order Of Level S Let S(d) Denote Thunclassified
See 4 more Smart Citations
“…for some fixed k. But then, the first term on the right hand side of (8) (8) ; 0) 3,13 (0; 6, 2 (7) ; 0) 3,17 (0; 2 (10) ; 0) 3,19 (0; 6, 2 (9) ; 0) 3,23 (0; 2 (12) ; 0) 3,31 (0; 6, 2 (13) ; 0) 7,11 (0; 2 (12) ; 0) (10) ; 0) 13 (0; 2 (11) ; 0) 17 (0; 2 (13) ; 0) 19 (0; 2 (14) ; 0) 2,3,5,11 ∅ (0; 6, 2 (4) ; 0) 7 (0; 6, 2 (9) ; 0) 13 (0; 6, 2 (14) ; 0) 2,3,5,13 ∅ (0; 2 (6) (14) ; 0) 2,3,7,11 ∅ (0; 4, 2 (5) ; 0) 5 (0; 4, 2 (10) ; 0) 2,3,7,13 ∅ (0; 2 (7) ; 0) 5 (0; 2 (13) ; 0) 2,3,7,17 ∅ (0; 2 (8) ; 0) 2,3,7,19 ∅ (0; 4, 2 (7) ; 0) 2,3 7,23 ∅ (0; 4, 2 (8) ; 0) 2,3 7,29 ∅ (0; 2 (11) ; 0) 2,3,7,31 ∅ (0; 4, 2 (10) ; 0) 2,3,7,41 ∅ (0; 2 (14) ; 0) 2,3,7,47 ∅ (0; 4, 2 (14) ; 0) 2,3,11,13 ∅ (0; 2 (9) ; 0) 2,3,11,17 ∅ (0; 6, 2 (9) ; 0) 2,3,11,19 ∅ (0; 4, 2 (10) ; 0) 2,3,11,29 ∅ (0; 6, 2 (14) ; 0) 2,3,13,17 ∅ (0; 2 (12) : 0) 2,3,13,23 ∅ (0; 2 (15) ; 0) 2,3,17,19 ∅ (0; 2 (16) ; 0) 2,5,7,11 ∅ (0; 2 (9) ; 0) 3 (0; 2 (14) ; 0) 2,5,7,13 ∅ (0; 2 (10) ; 0) 2,5,7,17 ∅ (0; 2 (12) : 0) Table 3. Cocompact groups with four ramified primes.…”
Section: And Let E Be An Eichler Order Of Level S Let S(d) Denote Thunclassified
“…Then r = 3, 4 or 6 and there exists an embedding σ : Q(e 2πi/r ) → B such that N (E) + contains a conjugate of σ(u) where u = 1 + e 2πi/r (see [8,27]). Conditions for the existence of such an embedding are given in Theorem 2.2 and are incorporated into the formula (6) below.…”
Section: Now Suppose γmentioning
confidence: 99%
See 3 more Smart Citations